(1) $f_{C}=900 \mathrm{MHz}=9 \times 10^{8} \mathrm{~Hz}, \quad R=100 \mathrm{~m} \quad$ Need to make sure worst $d=100 \mathrm{~m}$ at the cell nondirectional antenna $\Rightarrow G_{T_{x}} G_{R_{x}}=1 \quad$ boundary receive the minimum required power.
By the Eris Equation,

$$
\begin{aligned}
10 \mu W & =\frac{P_{r}}{P_{t}}=\left(\frac{\sqrt{G_{t} G_{R_{x}} c}}{4 \pi d f}\right)^{2}=\left(\frac{3 \times 10^{8}}{4 \pi \times 100 \times 9 \times 10^{8}}\right)^{2} \\
P_{t} & =10 \times 10^{-6} \times(12 \pi \times 100)^{2}=144 \pi^{2} \times 10^{-1} \approx 142 \mathrm{~W}
\end{aligned}
$$

If the system frequency is changed to $f=5 \mathrm{GHz}$

$$
=5 \times 10^{9} \mathrm{~Hz},
$$

then we need

$$
\begin{aligned}
P_{t} & =\frac{P_{r}}{\left(\frac{\sqrt{G_{T_{x}} G_{R_{x}} C}}{4 \pi d f}\right)^{2}}=\frac{10 \times 10^{-6}}{\left(\frac{3 \times 10^{8}}{4 \pi \times 100 \times 5 \times 90^{4}}\right)^{2}} \\
& =\frac{10}{9} \times(4 \pi \times 5)^{2} \approx 4.39 \mathrm{~kW}
\end{aligned}
$$

(2) Simplified part loss model:

$$
\frac{P_{r}}{P_{t}}=k\left(\frac{d_{0}}{d}\right)^{\gamma}
$$

In dB, this is

$$
\text { B) this is } P_{r}[d B]-P_{t}[d B]=10 \log _{10} k+\gamma \overbrace{10 \log _{10}\left(\frac{d 0}{d}\right)}^{b}
$$

For free-space path gain, $k=\left(\frac{\lambda}{4 \pi d_{0}}\right)^{2}=\left(\frac{c}{4 \pi d_{0} t}\right)^{2}$
Here, $f=900 \mathrm{MHL}, d_{0}=1 \mathrm{~m}$
Therefore,

$$
\underbrace{10 \log _{10} K}_{b}=10 \log _{10}\left(\frac{c}{4 \pi d f}\right)^{2} \approx-31.53 d B
$$

Note that t is of the form

$$
y(a)=b+\gamma a
$$

We are given five pairs of y_{i}, x_{i}. want to find γ such that

$$
\text { MSE }=\sum_{i=1}^{5}\left(y\left(x_{i}\right)-y_{i}\right)^{2}=\sum_{i}\left(b+\gamma x_{i}-y_{i}\right)^{2}
$$

is minimized.
so, we find

$$
\frac{d}{d \gamma} \text { MSE }=\sum_{i} 2\left(b+\gamma \alpha_{i}-y_{i}\right) x_{i}
$$

$$
0=b \sum_{i} \sigma_{i}+\gamma \sum_{i} \alpha_{i}^{2}-\sum_{i} \alpha_{i} y_{i}
$$

	d	d
y	d	-10
-70	10	-13
-75	20	-17
-90	50	-20
-110	100	-24.77

At $d=150 \mathrm{~m}, \quad d=10 \log _{10}\left(\frac{d v}{d}\right) \approx-21.76$.

$$
y=b+\gamma \propto \approx-112.24
$$

So, $\operatorname{Pr}[d B]-P_{t}[d B]=-112.24$

$$
\begin{aligned}
P_{r}[d B] & =P_{t}[d B]-112.24 \\
P_{r}[d B m] & =\underbrace{P_{t}[d B m}_{0}]-112.24=-112.24 \mathrm{dBm} .
\end{aligned}
$$

Remark:
If you haven't played with $d B$ and $d B m$ often, you probably find it strange that my answer above does not have the conversion of the unit of -112.24 to ABm.

This is because it is not power. It is simply a number that represents the factor of gain/attenuation.

To see this, let's try an easy example. consider two values of power:

$$
P_{1}=100 \mathrm{~W} \text { and } P_{2}=100,000 \mathrm{~W}
$$

Then,

$$
\begin{aligned}
P_{1} & =10 \log _{10} 100 \mathrm{~dB}=20 \mathrm{~dB} \\
& =10 \log _{10} \frac{100}{1 \mathrm{~m}} \mathrm{dBm}=50 \mathrm{dBm}
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
P_{2} & =10 \log _{10} 10^{5} \mathrm{~dB}=50 \mathrm{~dB} \\
& =10 \log _{10} \frac{10^{5}}{1 \mathrm{~m}} \mathrm{dBm}=80 \mathrm{dBm}
\end{aligned}
$$

Nothing strange so far...
Now, note that

$$
P_{2}=1000 \times P_{1}
$$

In $d B$, we have

$$
\begin{aligned}
50 d B \Longrightarrow P_{2}[d B] & =10 \log _{10} 1000+P_{1}[d B] \\
& =30[d B]+P_{1}[d B]{ }_{20} d B .
\end{aligned}
$$

The number 1,000 is unites. It is not a quantity that represents power.
Now, note that in dBms, we have

To avoid confusion, you may see some references use $[d B W](\operatorname{Or}[d B(\omega)])$ and $[d B m W] \operatorname{lor}[d B(m W)])$ for the quantities that really represent power.

In which case, we write

$$
P_{1}[d B W]=30[d B]+P_{2}[d B W]
$$

and

$$
P_{1}\left[d B_{m W}\right]=\int_{\pi}[d B]+P_{2}[d B m W] \text {. }
$$

still have no "w" becaure they do not represent power.
summary: It's ok to directly add or subtract $d B$ values to a power level in dBm. The final answer will be a power level in dom.

Let f_{i} be the center freq. of the $i^{\text {th }}$ bend group.
The Eris Equation says

$$
\frac{P_{r}}{P_{t}}=\left(\frac{\sqrt{G_{T_{x}} G_{R_{x}}}{ }^{c}}{4 \pi}\right)\left(\frac{1}{d f}\right)^{2}=\frac{k}{d^{2} f^{2}}
$$

At f_{1}, the range (max distance) is $d_{1}=10 \mathrm{~m}$.
So, the min amount of P_{r} required for the system to work is $P_{r}=\frac{k}{\left(d_{1} f_{1}\right)_{2}} p_{r}$.

Now, at f_{i}, assuming that P_{t} is the same, then at distance d, the received power is

$$
p_{r}=\frac{k}{\left(d f_{i}\right)^{2}} p_{t}
$$

so, to have P_{r} of at least $\frac{k}{\left(d_{1} f_{1}\right)^{2}} P_{t}$, which is the min received power for the system to work, we need

$$
\begin{aligned}
& \frac{k}{\left(d f_{2}\right)^{y}} k_{t} \geqslant \frac{k}{\left(d_{1} f_{1}\right)^{2} R_{t}} \\
& d \leqslant \underbrace{d_{1} \frac{f_{1}}{f_{i}}}_{\imath_{\text {so }} \text {, this is the range } d_{i} \text {. }}
\end{aligned}
$$

Hence,

$$
d_{i}=\frac{d_{1} f_{1}}{f_{i}}
$$ (max distance)

$-\infty \quad \frac{f_{i}}{f_{i}}$

f_{i}	d_{i}
5,544	7.14
7,128	5.56
8,712	4.55
10,032	3.95

Note that in $[$ Nan, Guv, Qiu, Mu, and Takahashi, 2007], the d_{i} 's are incorrectly calculated by $d_{i}=d_{i}\left(\frac{f_{i}}{f_{i}}\right)^{2}$ which gives $5.10,3.09,2.07$, and 1.56 respectively.
(4) Recall that $c=f \lambda$, which means $\lambda=\frac{c}{f}$

Here, $f=0.9 \times 10^{9}, 1.9 \times 10^{9}$, and $5.8 \times 10^{9} \mathrm{~Hz}$.
Hence, $\lambda=33.3$, 15.8 , and 5.17 cm
(5) We will use MATLAB to find the values of N when i and j are between 0 and 7 .

Here is the code:

$$
\begin{aligned}
& \text { [I J] = meshgrid(0:6,0:6); } \\
& \mathrm{N}=1 .^{\wedge} 2+1 .^{*} \mathrm{~J}+\mathrm{J} . \wedge 2 ; \\
& \text { This part finds } \\
& \mathrm{N}=\text { unique(reshape }(\mathrm{N}, 1 \text {, numen }(\mathrm{N})) \text {); the unique values } \\
& N=N(N>7) ; \quad \text { Take only } N>7 \\
& N=N(1: 15)<\text { Use only } 15 \text { values. }
\end{aligned}
$$

So, the next 15 values of N are

9	12	13	16	19	21	25	27	28	31	36	37	39	43	48

missing
We know that we can't have any values of N between the above numbers be cause we have consider all i, j between 0 and 6 . Any other values of N must come from (i, j) pair which has at least one of the i or $j \geqslant 7$ which will give $\quad N \geqslant 7^{2}=49$.
(6) (a) Each simplex channel wee 25 kHz .

So, each duplex channel we 25×2

$$
=50 \mathrm{kHz}
$$

Total spectrum $=20 \mathrm{MHZ}$

$$
\text { X duplex channel }=\frac{2 \phi \times 10^{63}}{5 Q \times 10^{3}}=400 \text { channels }
$$

(b) Each cluster will use to whole 400 channels.

These channels are divided among the cells in each cluster.
For $N=4$, there are 4 cells in a cluster.
Hence
x channel $=\frac{400}{4}=100$ channels per
(7) (a) To find the distance D_{1}, \cdots, D_{6}, let's recall some facts about hexagon.

D_{3} and D_{6} are easy to find. $D_{3}=R+R=2 R$

$$
D_{6}=R+R+R+R=4 R
$$

For the rest of the distances, the key to find them is to select suitable right triangles.

$$
D_{1}^{2}=D_{5}^{2}=(3 \beta)^{2}+\left(\frac{5}{2} R\right)^{2}=\left(9 \times \frac{3}{4}+\frac{25}{4}\right) R^{2}
$$

$$
=13 R^{2}
$$

$$
D_{1}=D_{5}=\sqrt{13} R
$$

$$
D_{2}^{2}=D_{4}^{2}=\left(\frac{R}{2}\right)^{2}+(3 \beta)^{2}=\left(\frac{1}{4}+9 \times \frac{3}{4}\right) R^{2}
$$

$$
=7 R^{2}
$$

So, $D_{2}=D_{4}=\sqrt{7} R$

So,

$$
\begin{aligned}
& D_{1}=D_{5}=\sqrt{13} R \\
& D_{2}=D_{4}=\sqrt{7} R \\
& D_{3}=2 R \\
& D_{6}=4 R
\end{aligned}
$$

(b)

$$
\frac{S}{I}=\frac{R^{-\gamma}}{\sum_{i=1}^{6} D_{i}^{-\gamma}}=\frac{1}{\sum_{i=1}^{6}\left(\frac{D_{i}}{R}\right)^{-\gamma}}=\frac{1}{2 \times(\sqrt{13})^{-4}+2 \times(\sqrt{7})^{-4}+2^{-4}+4^{-4}}
$$

$$
\begin{aligned}
& =8.399 \\
& =9.242 \mathrm{~dB}
\end{aligned}
$$

(c)

$$
\begin{aligned}
\frac{D}{R}=\sqrt{3 N} \Rightarrow D & \Rightarrow \sqrt{3 N} \times R=\sqrt{3 \times 3} R \\
& =3 R \\
\frac{S}{I}=\frac{1}{6 \times 3^{-4}} & =13.5 \\
& =11.303 d B
\end{aligned}
$$

(d) In part (c) we use approximated distances and hence the answer is different from part (b) which use the exact distances.
When N is large, the difference will be small.
(8) $\frac{S}{I}=\frac{1}{K}(\sqrt{3 N})^{4}=\frac{1}{K}(3 N)^{2}=\frac{1}{K} 9 N^{2}$

We need this number to be $\geqslant 15 d B=10^{\frac{15}{10}}=10^{\frac{3}{2}}$
Recall that we want N to be small to get la ge capacity value. Hence, we need to pick minimal value of N such that the above in equality
is still satisfied.

For (a), we use $k=6$.

$$
\begin{aligned}
\frac{S}{I}=\frac{1}{2} \times Q^{3} \times N^{2} & \geqslant 15 d B \\
N^{2} & \geqslant \frac{2}{3} \times 10^{\frac{3}{2}}
\end{aligned}
$$

Possible values of
N are $3479 \ldots \sqrt{\frac{2}{3} \times 10^{3 / 2}}=4.591$
From Q_{1}, the min value of N such that it is still $\geqslant 4.6$ is $N=7$.

For (b), we use $k=2$.

$$
\begin{aligned}
\frac{s}{I}=\frac{1}{2} \times 9 N^{2} & \geqslant 10^{3 / 2} \\
N & \geqslant \sqrt{\frac{2}{9} \times 10^{3 / 2}}=2.651
\end{aligned}
$$

From Q_{1}, the min value of N such that it is still $\geqslant 2.6$ is $N=3$.

For (c), we use $k=1$

$$
\begin{aligned}
\frac{S}{I}=9 N^{2} & \geqslant 10^{3 / 2} \\
N & \geqslant \sqrt{\frac{1}{9} \times 10^{3 / 2}}=1.874
\end{aligned}
$$

From Q_{1}, the min value of N such that it is still $\geqslant 1.874$ is $N=3$

So, by using 120° sectoring the capacity of the system increases from the case of omnidirectional antenna.

However, if we've already use 120° sectoring, using 60° sectoring does not help in trim of capacity!!

Using 60° sectoring does not help in term ot capacity!!
(9) Let $\operatorname{Erlang} B(m, A)=\frac{A^{m} / m!}{\sum_{i=0}^{n} A^{i} / i!}$

This gives the probability of blocking $\left(P_{b}\right)$.
Of course, we want P_{b} to be small.
In this question, we want $P_{b} \leq \frac{0.5}{100}=0.005$.
For fixed m, Erlang $B(m, A)$ is an increasing function of A. Hence, if we don't want $P b$ to be greater than some value, we will need to limit the value of A to be less than some max quantity as well.
(a) $m=5 \Rightarrow P_{b}=\operatorname{Erlang} B(5, A) \leq 0.005$
\downarrow MATLAB

$$
A \leq 1.13 \text { Erlangs }
$$

Each wee generates 0.1 Erlangs.
So n wees will generate $n \times 0.1$ Erlongs.
Hence, we need

$$
\begin{aligned}
n \times 0.1 & \leq 1.13 \\
n & \leq 11.3
\end{aligned}
$$

So, the system con support 11 users
(b) $m=15 \Rightarrow$ Erlang $B(15, A) \leq 0.005$

$$
\begin{aligned}
A & \leq 7.38 \\
\Rightarrow \quad n & \leq 73.8
\end{aligned}
$$

So, the system can support 73 users
(c)

$$
\begin{aligned}
m=25 \Rightarrow E r \operatorname{lang} B(25, A) & \leq 0.005 \\
A & \leq 15 \\
\Rightarrow \cdots \cdots & \leq 150
\end{aligned}
$$

$$
\Rightarrow n \leq 150
$$

so, the system can support 150 users
(10) $\lambda=3$ calls per hour

$$
\frac{1}{\mu}=5 \text { minutes }=\frac{5}{60} \text { hour }=\frac{1}{12} \text { hour. }
$$

(a) $A_{u}=\frac{\lambda}{\mu}=3 \times \frac{1}{12}=\frac{1}{4} \quad$ Erlang per user
(b) Erlang $B(1, A) \leqslant 0.01$

$$
\begin{aligned}
\Rightarrow A & \leqslant 0.01 \\
n \times A_{\mu} & \\
n & \leqslant \frac{0.01}{1 / 4}=0.04
\end{aligned}
$$

so, the system can support 0 user
Note that this calculation cones from our assumption of $\mathrm{M} / \mathrm{M} / \mathrm{m} / \mathrm{m}$ queue which assumes" infinite" number of users with extremely small Erlang per user.
of course, we never have "infinite" number of users in real system.

So, it will not give an accurate answer for this case.
Intuitively, the system which has one channel should be able to support at least 1 user with 0% blocking.
The Erlang B formula should become more accurate when there are a lot of users.
(c) Erlang $B(5, A) \leq 0.01$

$$
\begin{aligned}
& \Rightarrow \quad A \leq 1.36 \\
& n \times A_{\mu}^{11}
\end{aligned}
$$

$$
n \leqslant 4 \times 1.36=5.44
$$

so, the system can support 5 users
(d) Erlang $B\left(5,2 \times 5 \times \frac{1}{4}\right)=0.0697=6.97 \%$

